
Appendix A. Mass and Energy Balances

The basic mass- and energy balance equations solved by TOUGH2 can be written in the

general form

d

dt
Mκ dVn Fκ n dΓn qκdVn

VnΓnVn

(A.1)

The integration is over an arbitrary subdomain Vn of the flow system under study, which is

bounded by the closed surface Γn. The quantity M appearing in the accumulation term (left hand

side) represents mass or energy per volume, with κ = 1, ..., NK labeling the mass components

(water, air, H2, solutes, ...), and κ = NK + 1 the heat “component.” F denotes mass or heat flux

(see below), and q denotes sinks and sources. n is a normal vector on surface element dΓn, pointing

inward into Vn.

The general form of the mass accumulation term is

Mκ φ Sβ ρβ Xβ
κ

β
(A.2)

The total mass of component κ is obtained by summing over the fluid phases β (= liquid, gas,

NAPL). φ is porosity, Sβ is the saturation of phase β (i.e., the fraction of pore volume occupied by

phase β), ρβ is the density of phase β, and Xβ
κ  is the mass fraction of component κ present in

phase β. A more general form of the mass accumulation term that includes equilibrium sorption on

the solid grains is given in Eq. (13). Similarly, the heat accumulation term in a multiphase system is

MNK 1 (1 φ)ρR CR T φ Sβ ρβ uβ
β

(A.3)

where ρR and CR are, respectively, grain density and specific heat of the rock, T is temperature, and

uβ is specific internal energy in phase β.

Advective mass flux is a sum over phases,

Fκ
adv

Xβ
κ Fβ

β
(A.4)

and individual phase fluxes are given by a multiphase version of Darcy's law:
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Fβ ρβ uβ k
k rβ ρβ

µβ
( Pβ ρβ g) (A.5)

Here uβ is the Darcy velocity (volume flux) in phase β, k is absolute permeability, krβ is relative

permeability to phase β, µβ is viscosity, and

Pβ P Pcβ (A.6)

is the fluid pressure in phase β, which is the sum of the pressure P of a reference phase (usually

taken to be the gas phase), and the capillary pressure Pcβ (≤ 0). g is the vector of gravitational

acceleration. Vapor pressure lowering due to capillary and phase adsorption effects is modeled by

Kelvin’s equation (Edlefsen and Anderson, 1943),

Pv T,Sl fVPL T,S l Psat T (A.7),

where

f VPL exp
Mw Pcl Sl

ρl R T 273.15
(A.8)

is the vapor pressure lowering factor. Psat is the saturated vapor pressure of bulk aqueous phase, Pcl

is the difference between aqueous and gas phase pressures, Mw is the molecular weight of water,

and R is the universal gas constant.

Heat flux includes conductive and convective components

FNK 1 λ T hβ Fβ
β

(A.9)

where λ is thermal conductivity, and hβ is specific enthalpy in phase β. Radiative heat transfer

according to the Stefan-Boltzmann law can also be modeled (see Eq. E.2).

Absolute permeability of the gas phase increases at low pressures according to the relation

given by Klinkenberg (1941)
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k k 1
b

P
(A.10)

where k∞ is the permeability at “infinite” pressure, and b is the Klinkenberg parameter. In addition

to Darcy flow, mass transport can also occur by diffusion and hydrodynamic dispersion, as follows

(de Marsily, 1986).

Fκ
dis

ρβ D β
κ

β
Xβ

κ (A.11)

The hydrodynamic dispersion tensor is given by

D β
κ Dβ,T

κ I 
Dβ,L

κ Dβ,T
κ

uβ
2 uβ uβ (A.12)

where

Dβ,L
κ φτ 0τβdβ

κ αβ,L uβ (A.13a)

Dβ,T
κ φτ 0τβdβ

κ αβ,T uβ (A.13b)

are longitudinal and transverse dispersion coefficients, respectively. dβ
κ  is the molecular diffusion

coefficient for component κ in phase β, τ0τβ is the tortuosity which includes a porous medium

dependent factor τ0 and a coefficient that depends on phase saturation Sβ, τβ = τβ(Sβ), and αL, αT

are the longitudinal and transverse dispersivities. Full hydrodynamic dispersion is included only in

special versions of TOUGH2, while molecular diffusion in all phases is now part of the standard

code. The mass flux from molecular diffusion alone is obtained by setting αL = αT = 0 in Eq.

(A.11 - A.13); diffusive flux of component κ in phase β is given by (see Appendix D)

fβ
κ φτ 0 τβ ρβ dβ

κ Xβ
κ (A.14)

By applying Gauss’ divergence theorem, Eq. (A.1) can be converted into the following PDE

∂ Mκ

∂ t
div Fκ qκ (A.15)
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which is the form commonly used as the starting point for deriving finite difference or finite

element discretization approaches. Of special interest is a simplified version of Eq. (A.15) for an

approximate description of water seepage in the unsaturated zone. Neglecting phase change effects

and assuming that the gas phase acts as a “passive bystander” with negligible gas pressure

gradients, the following equation for liquid phase flow is obtained

∂
∂t

φ Sl ρl div k
k rl

µl
ρl Pl ρl gz (A.16)

Neglecting variations in liquid phase density and viscosity, as is appropriate for (nearly) isothermal

conditions, Eq. (A.16) simplifies to Richards’ equation (1931)

∂
∂t

θ = div K∇h[ ] (A.17)

where θ = φSl is specific volumetric moisture content, K kk rl ρl g µl  is hydraulic conductivity,

and h z Pl ρl g is the hydraulic head.
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APPENDIX B. SPACE AND TIME DISCRETIZATION

The continuum equations (A.1) are discretized in space using the integral finite difference

method (IFD; Edwards, 1972; Narasimhan and Witherspoon, 1976). Introducing appropriate

volume averages, we have

M dV
Vn

Vn Mn (B.1)

where M is a volume-normalized extensive quantity, and Mn is the average value of M over Vn.

Surface integrals are approximated as a discrete sum of averages over surface segments Anm:

Fκ n dΓ
Γn

Anm
m

Fnm (B.2)

Here Fnm is the average value of the (inward) normal component of F over the surface segment

Anm between volume elements Vn and Vm. The discretization approach used in the integral finite

difference method and the definition of the geometric parameters are illustrated in Fig. 60.
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Figure 60.  Space discretization and geometry data in the integral finite difference method.

The discretized flux is expressed in terms of averages over parameters for elements Vn and Vm. For

the basic Darcy flux term, Eq. (A.5), we have
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Fβ,nm knm

k rβ ρβ
µβ nm

Pβ,n Pβ,m

Dnm
ρβ,nm gnm (B.3)

where the subscripts (nm) denote a suitable averaging at the interface between grid blocks n and m

(interpolation, harmonic weighting, upstream weighting). Dnm = Dn + Dm is the distance between

the nodal points n and m, and gnm is the component of gravitational acceleration in the direction

from m to n. Discretization of diffusive fluxes raises some subtle issues and is discussed separately

in Appendix D.

Substituting Eqs. (B.l) and (B.2) into the governing Eq. (A.1), a set of first-order ordinary

differential equations in time is obtained.

dMn
κ

dt

1

Vn
Anm Fnm

κ

m

qn
κ (B.4)

Time is discretized as a first-order finite difference, and the flux and sink and source terms

on the right-hand side of Eq. (B.4) are evaluated at the new time level, tk+l = tk + ∆t, to obtain the

numerical stability needed for an efficient calculation of multiphase flow. This treatment of flux

terms is known as “fully implicit,” because the fluxes are expressed in terms of the unknown

thermodynamic parameters at time level tk+l, so that these unknowns are only implicitly defined in

the resulting equations (see, e.g., Peaceman, 1977). The time discretization results in the following

set of coupled non-linear, algebraic equations

Rn
κ,k 1 Mn

κ,k 1 Mn
κ,k ∆ t

Vn
Anm Fnm

κ,k 1

m

Vn qn
κ,k 1

0

(B.5)

where we have introduced residuals Rn
κ,k 1 . For each volume element (grid block) Vn, there are

NEQ equations (κ = 1, 2, ...., NEQ; usually, NEQ = NK + 1), so that for a flow system with NEL

grid blocks (B.5) represents a total of NEL x NEQ coupled non-linear equations. The unknowns

are the NEL x NEQ independent primary variables {xi; i = 1, ..., NEL x NEQ} which completely

define the state of the flow system at time level tk+l. These equations are solved by

Newton/Raphson iteration, which is implemented as follows. We introduce an iteration index p and
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expand the residuals Rn
κ,k 1  in Eq. (B.5) at iteration step p + 1 in a Taylor series in terms of those

at index p.

Rn
κ,k 1 xi,p 1 Rn

κ,k 1 xi,p
∂ Rn

κ,k 1

∂ xii p

x i,p 1 xi,p ... 0 (B.6)

Retaining only terms up to first order, we obtain a set of NEL x NEQ linear equations for the

increments (xi,p+1 - xi,p):

∂Rn
κ,k 1

∂xii p

xi,p 1 x i,p Rn
κ,k 1 xi,p (B.7)

All terms ∂Rn/∂xi in the Jacobian matrix are evaluated by numerical differentiation. Eq. (B.7) is

solved by sparse direct matrix methods (Duff, 1977) or iteratively by means of preconditioned

conjugate gradients (Moridis and Pruess, 1995, 1998). Iteration is continued until the residuals

Rn
κ,k 1  are reduced below a preset convergence tolerance.

Rn,p 1
κ,k 1

Mn,p 1
κ,k 1 ε1 (B.8)

The default (relative) convergence criterion is ε1 = 10-5 (TOUGH2 input parameter RE1). When

the accumulation terms are smaller than ε2 (TOUGH2 input parameter RE2, default ε2 = 1), an

absolute convergence criterion is imposed,

| Rn
κ,k 1 | ≤ ε1 • ε2 (B.9).

Convergence is usually attained in 3 - 4 iterations. If convergence cannot be achieved within a

certain number of iterations (default 8), the time step size ∆t is reduced and a new iteration process

is started.

It is appropriate to add some comments about our space discretization technique. The entire

geometric information of the space discretization in Eq. (B.5) is provided in the form of a list of

grid block volumes Vn, interface areas Anm, nodal distances Dnm and components gnm of

gravitational acceleration along nodal lines. There is no reference whatsoever to a global system of
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coordinates, or to the dimensionality of a particular flow problem. The discretized equations are in

fact valid for arbitrary irregular discretizations in one, two or three dimensions, and for porous as

well as for fractured media. This flexibility should be used with caution, however, because the

accuracy of solutions depends upon the accuracy with which the various interface parameters in

equations such as (B.3) can be expressed in terms of average conditions in grid blocks. A general

requirement is that there exists approximate thermodynamic equilibrium in (almost) all grid blocks

at (almost) all times (Pruess and Narasimhan, 1985). For systems of regular grid blocks referenced

to global coordinates (such as r - z, x - y - z), Eq. (B.5) is identical to a conventional finite

difference formulation (e.g., Peaceman, 1977; Moridis and Pruess, 1992).
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